
2nd VerifyThis Long-term Challenge:
Specifying and Verifying a Real-life Remote

Key-Value Cache (memcached)

Gidon Ernst1 and Alexander Weigl2

1 Ludwig Maximilian University, Munich, gidon.ernst@lmu.de
2 Karlsruhe Institute of Technology, weigl@kit.edu

Abstract. Tremendous progress was achieved in the area of deductive
program verification in last decades. In the Verify This Long-term Chal-
lenge we want to demonstrate our performance in achieving safe and
secure software systems. Goal of the challenge is to foster collaboration in
order to verify a realistic and industrially-relevant software application.
This paper introduces the second Long-term challenge: The specification
and verification of a remote key-value cache, inspired by and acting as
compatible drop-in replacement of the memcached software package, which
is widely in use at major companies.

Website: https://verifythis.github.io/
Mailing List: https://www.lists.kit.edu/sympa/info/verifythis-ltc
Reference System: http://memcached.org/

1 Introduction

Program verification is an established and important research area with tremen-
dous progress since its beginning in Weakest-Precondition- and Hoare calculus [8].
Witnesses of development of can be found in large large, non-trivial case studies,
such as the verification of the data structure and algorithm implementation in
the shipped Java libraries [5,4], or the parallel nested depth first search [16].
State-of-the-art program verification tools compared and evaluated in competi-
tions such as VerifyThis [12,13,11,9,10] and VSComp [15,7], which both embrace
the “human factor” [6] as a necessary ingredient to specify and verify complex,
application-specific properties of software. This is in contrast to SV-COMP [3]
and Test-Comp [2], for example, which aim at evaluating fully automatic meth-
ods (such as explicit and symbolic model-checking) for software verification and
testing instead. Nevertheless, the challenge proposed in this document contains
many aspects that can be tackled with tools typically participating at SV-COMP
and Test-Comp and we explicitly welcome contributions in this regard.

The intention of the VerifyThis Collaborative Long-term Challenge series is to
demonstrate that deductive program verification can produce relevant results for
real systems with acceptable effort. Moreover, we aim to bring together members
of the community for a focused exchange of ideas, techniques, insights, and

https://verifythis.github.io/
https://www.lists.kit.edu/sympa/info/verifythis-ltc
http://memcached.org/

experiences. The developments will serve to evaluate and improve the effectiveness
and maturity of verification tools.

Here, we propose the second VerifyThis long-term challenge: A verified
drop-in replacement of the in-memory key-value cache memcached.3 Software
like memcached is the backbone for fast response in cloud-native environment by
storing and caching hot information. This particular software package is open
source (BSD 3 clause license) and it is widely in use at major players like Google,
Amazon, Microsoft, Facebook, and Twitter.

At the same time, much of the complexity of memcached is internal, i.e.,
its external interface is fairly straight-forward, which means that developing a
(verified) drop-in replacement that supports a compatible subset of the protocol
requires a reasonably low effort only.

The intuitive understanding of memcached, described in detail in section 2, is
that of a mapping from keys to values. However, memcached is not adequately
described by a simple functional mapping, i.e., it is not “just another hash-table
challenge”. It comes with some characteristics that render it interesting from
a specification perspective, notably centered around the semantics of protocol
actions and cache eviction. This is paired with elaborate internal, implementation-
level data structures and algorithms, which bring, e.g., concurrency and memory
management into the picture. There is a wealth of (typical) conceptual challenges,
such as integration with unverified OS interfaces and how to achieve a modular
architecture in which abstractions are not leaky.

The overarching goals and research directions of this long-term challenge,
further elaborated in section 3, are as follows:

– Develop high-level behavioral models and contract specifications that ab-
stractly capture the core functionality of a remote cache server, the protocol,
and the client library

– Characterize global properties of the entire system, e.g. temporal liveness
and safety properties related to the lifecycle of cache entries

– Design and verify an implementation that realizes these requirements and
that may serve as a drop-in replacement for memcached with support of a
significant subset of its features

– Verify parts of the actual memcached implementation (written in C), using e.g.
scalable software model checking methods or focused deductive techniques
on critical routines

We emphasize that the challenges associated with these respective goals can be
scaled in many dimensions (realistic interfaces, algorithms and data structures,
features). It is therefore easy to get started, in fact, we provide two abstract but
reasonably complete executable reference implementations that should help with
the first steps (section 2).

At the same time there is a clear perspective for a scientifically and practically
meaningful outcome. We welcome collaboration and contributions of any kind—if
you are interested, please join the Mailing list and let us know of your intention
3 https://memcached.org/

2

https://memcached.org/

to participate. We will follow-up with informal community meetings co-located
to major events and we are planning a joint publication effort to document the
outcomes (cf. section 4).

2 System Description

memcached is an in-memory key-value store that acts as a cache. It offers operations
to enter keys into the cache data structure with associated values and also a
timeout for which the association is valid. In contrast to traditional databases,
entries can implicitly be evicted from the cache due to memory pressure, which
memcached resolves by a LRU protocol. The architecture of the main memcached

application is that of a server which serves requests to clients by spawning multiple
threads, which in turn access the shared internal data structure. The standard
interface is a simple text and line-based over telnet with a small set of commands
that include lookup, update, and also (atomic) replacement. memcached is supposed
to serve multiple front-end applications at a time. Typically, memcached is used
via a client library interface which offers a high-level API. Such libraries exist
for a variety of programming languages (including Javascript and PHP). Besides
setting up the telnet connection and realizing the simple communication protocol,
client libraries may also support load-balancing queries over a pool of memcached
servers, such that each server is made responsible for a subset of the keyspace in
use by the application.

Resources: Please feel free to use the following resources to familiarize yourself
with the functionality and internals of the memcached server and its behavior. Note
that both implementations may be incomplete and/or not entirely be faithful
to the reference memcached. If you spot such a difference that is not documented
please contact the respective author or file a github issue.

– A great description of the internals is this video by Hussein Nasser:
memcached is https://www.youtube.com/watch?v=NCePGsRZFus

– High-level executable Python model and implementation (Gidon Ernst):
https://github.com/gernst/pycached

– Java implementation (protocol, main functionality, Alexander Weigl):
https://github.com/wadoon/bloatcache

Figure 1 shows a high-level diagram of the architecture of the memcached

server and how it communicates with clients via programming libraries. We
describe the text protocol in section 2.1, some aspects of the internal storage
system in section 2.2, and some aspects of client libraries in section 2.3. We defer
specification and verification challenges to section 3.

2.1 Text Protocol

The communication between the clients and server takes place over TCP/IP
protocol in which both parties are sending message. A message consists of either

3

https://www.youtube.com/watch?v=NCePGsRZFus
https://github.com/gernst/pycached
https://github.com/wadoon/bloatcache

API

connect(host, port);
auth(user, pass);
get(key);
...
set(key, val);
...

Text Protocol
De-/Serialization
Error Handling

Text Protocol
De-/Serialization
Error Handling
Attack Robustness

Data Management Warm

Hot

Cold

À
Eviction Timer

triggers

Server

Client

TCP

Fig. 1. Architecture diagram: The client uses an abstraction which provides access to
server functionalities. Requests and responses are exchanged using a text protocol. The
server manages the parallel access on the three buckets of the LRU cache.

one or two lines, which are terminated by carriage return \r and newline feed
\n. The communication is a mix of text in ASCII encoding (commands, keys,
meta-data) and binary (values, also “content” below). Each command line is
similar to a shell input. The command line consists of command name (lower case
and case-sensitive) and the parameters delimited by a space (ASCII char 32).
Messages that specify a value explicitly mention its length in bytes.

Note that here we concentrate on the functional necessary commands. Helper
or debugs commands (e.g., statistic query) are omitted to give us more flexibility
on the data structure. The official documentation of the protocol can be found
here: https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Examples of communication are in appendix A. The majority of this section
focuses on the protocol, because it represents the external interface as a common
ground for all efforts.

Requests. The client is able to send following retrieval or manipulation com-
mands. The connection is can always be closed by the client without sending a
termination command. memcached knows four retrieval commands and also eight
manipulation commands. The syntax is given in Fig. 2 and 3:

retrieval The get and gets request the stored value of the given keys. The
answer for a key is defined in Fig. 5. Additionally to get, gat(s) also updates
the expiration time of a stored key-value pair.

touch The update of the expiration time can be done by touch without requesting
the current value.

4

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Fig. 2. Syntax diagram for client requests

req ::= (<ret> | <man>)*
end ::= "END" "\r\n"

ret ::= (<gat> | <get>) "\r\n"

get ::= ("get" | "gets") <exptime> <key>*\r\n

gat ::= ("gat" | "gats") <exptime> <key>*\r\n

man ::= <cas> | <touch> | <store> | <delete>

store ::= ("set" | "add" | "replace" | "prepend" | "append")

<key> <flags> <exptime> <bytes> ["noreply"] "\r\n"

cas ::= "cas" <key> <flags> <exptime> <bytes> <cas unique>

["noreply"] "\r\n"

touch ::= "touch" <key> <exptime> ["noreply"]"\r\n"

delete ::= "delete" <key> ["noreply"]\r\n

Fig. 3. Grammar in EBNF of client requests

5

manipulation The five manipulation (set, add, replace, prepend, append) com-
mands have the same structure. The client supply the key, possible flags,
expiration time and the length of the content, followed by the content on the
next line. The behavior of the handling depends then on the command. set
just assigns the given content, expiration time and flags to the key regardless
of the current state. add does the same, but only of if the key is unassigned.
replace only reassign existing keys. append and prepend append or prepend
the given content on the previously assigned value.

incr/decr The increment and decrement are a little bit simpler: the given value
is added or subtracted to the assigned value to the key. For this, the assigned
value is treated as a 64-bit unsigned integer. If the assigned value does not
fit into this scheme, an error is thrown.
There is no underflow: If decrement reduces the value below zero, it becomes
zero. Overflows are still possible.

cas The command cas stands for compare and swap, which bases on the unique
cas value. cas is the base for parallel processes. cas replaces (swaps) a value
only if the supplied cas number is the same as the internal stored one. This
helps to prevent race conditions between multiple client. The internal cas
number is maintained on changes of the key-value entry.

delete The command delete removes an item instantly from the internal cache.

Any number, such as a timestamp or a length is represented by its human-
readable ASCII decimal encoding.A key is a sequence of bytes with a length
at most 250 bytes, and without control or whitespace characters (as regular
expression /[!-ÿ]{1,250}/). The exptime defines the expiration time of an entry
in seconds. Given values smaller or equal to 2592000 (seconds in 30 days), the
given expiration time is considered relatively to the current time, otherwise it is
seen as the absolute UNIX timestamp (seconds since 00:00:00 UTC on 1 January
1970). The flags are the decimal encoding of an unsigned 16-bit number (32-bit
in newer versions) that is opaque to the server and can be used by the client. The
bytes are the decimal encoding of an unsigned integer describing the length of
the values. There may be an implementation-defined upper bound on the length
of values, and it seems that memcached supports content of up to 1 megabyte
(cf. SLAB classes in section 2.2). A reasonable upper limit is that the length
can be represented as a 64-bit unsigned integer. The cas-unique is the decimal
representation of an 64-bit unsigned integer which identifies the serial number
of a value that is associated to (any) key. memcached appears to have a global
counter that increments with each mutation command and is stored as part of
an entry as its “serial number”. It is thereby possible to detect whether the value
for a given key is unchanged by storing the cas-unique and comparing it on later
accesses.

Usually, each command is acknowledged explicitly by the server (see below).
The noreply keyword can be attached to some of the commands to signal that
no response should be emitted from the server.

6

Fig. 4. Syntax diagram for responses

answer ::= (<vals> | <error> | <success> | <value>)

vals ::= <val>* <end>

val ::= "VALUE" <key> <flags> <bytes> [<cas-unique>]\r\n

<content>\r\n

error ::= "ERROR\r\n"

| "CLIENT_ERROR [<error>]\r\n"

| "SERVER_ERROR <error>\r\n"

success ::= "STORED\r\n"

| "TOUCHED\r\n"

| "NOT_FOUND\r\n"

| "NOT_STORED\r\n"

| "EXISTS\r\n"

| "DELETED\r\n"

Fig. 5. Grammar in EBNF for server-side responses

7

Responses Given a request of a client, the server answers retrieval commands
with a list of value entries, error or success messages, and in case of incr and
decr with the new value. The overview is given in figs. 4 and 5.

The retrieval commands get, gats, . . . return a list of value entries. A value
entry consists of two lines: The first is indicated by the keyword VALUE and
followed by key, current flags, the length of the content and the internal cas value.
Followed by the content of the previously transmitted length in the first line.
Requested key entries that are now found are silently omitted.

The manipulation commands terminate successful with the message STORED.
In case of touch the answer is TOUCHED. And for incr and decr the new value is
returned. NOT_FOUND signals that the entry was expected to exists, but could not
be found (e.g., required by incr or replace). NOT_STORED signals that the entry
was not updated (e.g., add command on an existing entry).

Additionally, the server can answer with an error, signaling that something is
unexpected happened, e.g., a wrongly formatted command. The general error is
just the message ERROR. More detailed are delivered with CLIENT_ERROR <error>

which signals that the client is responsible for the error. SERVER_ERROR <error>

indicates a server-side error. After an SERVERE_ERROR the server closes the con-
nection. This is the only case, in which the server terminates a connection with a
client.

Authentication memcached supports username-password authentication, which
is implemented by using the set command. If authentication is activated the first
command must be set with the content of the username and password:

set <key> <flags> <exptime> <bytes>\r\n

<username> <password>\r\n

The parameters key, flags and exptime are ignored, but bytes has to match the
content length. The server answered regularly with a STORED or CLIENT_ERROR.

2.2 memcached’s Storage Oganization

This section describes how memcached organizes its storage internally. Solutions to
the long-term challenge, however, may deviate from the scheme described below
in any regard. The description is necessarily very low-level, to reflect the design
decisions made for space and time efficiency.

Entries are maintained in a cache data structure (the SLABs, see below)
indexed by a hash table from keys pointing to entries in the cache. In memcached,
the hash-table is of dynamic size with linked lists to collect entries with the same
hash.

Entries stored by memcached are partitioned according to the size of the at-
tached values. There are bins, so-called SLAB classes, for exponentially increasing
sizes, such that for example, all entries with values of length n with 2k ≤ n < 2k+1

are stored in the k-th SLAB class. A SLAB then consists of a number of operating
system pages, i.e., it is possible to resize a SLAB with page granularity.

8

Entries are removed from the cache data structure in two situations: Explicitly
after their expiration time (by a background thread that scans the cache) and
implicitly when memory pressure is encountered. In the latter case, memcached
evicts those entries which are not used often. memcached implements two schemes
for that purpose.

In the old scheme, the entries in each SLAB form a doubly linked list in
last-recently used LRU order—each access moves that entry to the beginning of
the LRU list. Therefore, entries at the end of the LRU list are good candiates for
cleanup, because they seem to be used less frequently.

In the new scheme, the cache is partitioned into HOT, WARM, and COLD
areas, in which unused entries gradually move to cooler areas. Space reclamation is
performed on the COLD area (first?). The details can be found in this document:
https://github.com/memcached/memcached/blob/master/doc/new_lru.txt

2.3 Client Libraries

A client library is an API in a particular programming language that offers a
high-level and perhaps type-safe way to access memcached’s functionality. This
may be realized by an interface or similar with top-level methods/procedures for
all commands listed in section 2.1 over appropriate data types that represent
keys, values, timestamps, and so on.

Such a library is a place where a multiplexing proxy can be implemented, i.e.,
a mechanism that partitions a (huge) number of entries across multiple servers,
each running memcached. The client would then simply partition the key-space
according to the number of servers and select the appropriate one to access a
given key.

3 Specification and Verification Challenges

Goal: High-level Behavioral Models

The first challenge is to create a faithful formal specification of the external
behavior of memcached at a suitable degree of abstraction. Part of such a specifi-
cation is a set of operations, an abstract representation of the externally data
model (such as keys, values, . . .) and an abstract representation of the internal
state. The Python and Java implementations mentioned as preliminary work in
this document are already fairly close to such a model, however, they are not
fully formal.

Clearly, there are many ways to approach this challenge. For example, one
has the choice of whether the model is state-finite, whether nondeterminism is
used as a specification mechanisms, whether the model is executable, and how
accurately cache timeouts are reflected. This kind of specification serves different
purposes in the challenge:

Documentation of the functional requirements, as an anchor point and
reference for all further development. Note that it can be shared across the

9

https://github.com/memcached/memcached/blob/master/doc/new_lru.txt

specification of the server operations and the client API, for example, with the
actual protocol implementation being a separate concern.

Modularization: Typically, in formal developments, one must pay close
attention that the structural abstractions support the subsequent verification. By
emphasizing the role of the behavioral model as a separate entity here, we also
urge to keep the top-level specification clean of any implementation concerns,
such exposing internal pointers or mixing implementation-level objects into the
description of inputs and outputs of operations.

Collaboration can be achieved if such a specification is formulated with a
mathematical language that can be translated without much ambiguity between
tools. A common ground is SMT-LIB like, i.e., first order logic with sets, maps,
sequences, and records, possibly with function definitions and quantifiers, wherein
the semantics of system operations is captured as relations between inputs,
outputs, and a pre-/post pair of internal abstract states. While we do not
necessarily suggest that this kind of collaboration is made manifest in an automatic
translation between tools and formalisms, we hope it will take a step towards
unifying specification languages and integrating verification tools eventually.

Goal: Characterize Global Properties

Another step to characterize the intended behavior of the system is to focus on
global properties that go beyond simple two-state specifications or contracts, e.g.,
trace-properties expressed in LTL or CTL, or even hyperproperties over multiple
traces. Closely related is the question of how to adequately model the passing of
time. Again, this kind of specification has different aspects:

Documentation of desired behavior by relating different events and operation
calls. For instance, a property of interest could be that whenever a cache entry is
stored with an expiration date, it can be retrieved successfully before the timeout
(an example for a liveness property) and it becomes inaccessible afterwards (a
safety property)—unless of course the entry for the same key is overwritten or it
is evicted due to memory pressure.

Collaboration between deductive methods and model-checking approaches
hinges on how a contract-based view can be connected to such a high-level
perspective. Research questions include for example how to map between events
and the code, how to integrate the respective semantic foundations, and under
which conditions the properties that have been verified are preserved at the
implementation level (e.g. via refinement).

Goal: Design and Verify an Implementation

Implementing a cache server that adheres to the behavioral model may embrace as
little and as many of the strategies of memcached for efficiency, such as concurrency
or explicit memory allocation and management. Some interesting aspects are:

A verified Core System which implements the top-level specification of
desired behavior.

10

Protocol: A key challenge is a verified implementation of the parser/serializer
that bridges between a conceptual representation of protocol messages and the
actual text/byte-based representation that is communicated between the server
and the client. For example, is it possible to provide a systematic and declarative
definition of the on-wire format via a grammar and can the verification make
effective use of such a specification?

Integration with unverified operating system interfaces. Specifying the
behavior of network interfaces (like sockets) and the respective functionality
offered by the OS and programming environment comes with the need of having
some abstract model of the underlying network connection, i.e., the other end
of the communication that is accessed by the server. While these concerns may
typically be fairly low-level, one can also ask: what are the assumptions that
are needed to prove the high-level properties, specifically which assumptions on
the communication partner are needed to make liveness properties true, and
how can such assumptions be represented? Moreover, different programming
paradigms exist for multiplexing serving multiple clients at a time, such as threads,
fork-and-exec, callbacks, or non-blocking input and output, which may involve
non-sequential control flow.

Goal: Verifying the memcached implementation

Lastly, we propose to look at verifying (parts of) the actual open source implemen-
tation memcached. Such efforts can roughly be distinguished into two categories:
Software Model Checking of generic properties like memory safety or absence
of race conditions of the actual C source code. Deductive Verification of
critical components, data structures, or algorithms. In both cases, it is of interest
to know how much effort is needed to adapt the original source code for the
purpose of verification, or viewed in reverse, how well existing tools can deal with
real-world code and the C features used in memcached. A proposal is to derive
suitable benchmark tasks for the SV-COMP benchmark repository [3].4

List of Technical Challenges

Below we summarize some technical challenges that we think are interesting. We
do not claim that this list is exhaustive and we welcome feedback by participants
to extend this list with additional properties, aspects, and requirements that we
have not yet thought of.

Server Side Goal is to develop a drop-in replacement of the memcached server
that is compatible at the interface level. There are many variations and challenges
which can be addressed (e.g. for efficiency), but a simple server can be realized
rather quickly to get started.

– Implementation and verification of the text-based protocol, including the
parser and serializer, and mapping to some higher-level data types

4 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

11

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

– Implementation and verification of the network management code, including
set-up of the listener socket and serving of incoming of connections

– Integration of the program with unverified OS interfaces
– Implementation and verification of an in memory hash table that backs up

the key value store.
– Implementation and verification of the memory allocator for the stored data,

which in memcached is realized as a SLAB to deal with fragmentation issues
– Realization of the cache eviction protocol and timestamps. In memcached, the

caches are partitioned into HOT, WARM, and COLD, with the expecation
that the HOT items are read a lot, whereas the COLD area is scanned for
stale/out of date data

– Implementation and verification of concurrency inside the server, perhaps
making use of some fancy lock-free techniques

– DDOS protection
– Model and verify performance in terms of O(_) for space/runtime efficiency

for all data structures/algiorithms

Client Library The goal is to develop a client library for your favorite pro-
gramming language that provides higher- level abstractions over the lower-level
network protocol.

– Protocol and connections (cf. above)
– Develop a high-level specification of the API which can be relied on by

application programs
– Support to act as a proxy to multiple back-end memcached servers by parti-

tioning the keyspace
– Perhaps: load-balancing features
– Memory safety and all that
– Functional Correctness of the various aspects
– Runtime and memory complexity/bounds (e.g. cache size, hash table amor-

tized costs)
– Temporal properties, such as that each connection is served (under some

fairness assumptions)
– OS interface specifications, modeling of the network communication
– Global LRU eviction protocol and cache timing guarantees (e.g. no entry is

stored longer than the user-supplied validity timeout)

4 Participation and Time Schedule

The first long-term challenge did take place during the COVID-19 pandemic,
which gave us the advantage of establishment of online meetings, which were held
frequently. For the 2nd LTC we propose following schedule: The announcement of
the challenge takes place at the TOOLympics session at the ETAPS conference. A
first informal meeting is intended to take place at the iFM in Leiden in 2023 and
a second meeting at the ETAPS in April 2024. We intend to close the challenge
with a track at ISoLA in autumn 2024.

12

To participate, please register on the VerifyThis LTC Mailing List: https:
//www.lists.kit.edu/sympa/info/verifythis-ltc, over which all communication
and discussion takes place. To make your team known, please send a short
E-Mail to announce your participation, perhaps including a plan on which
features you want to work on, which programming language you target, which
verification tool(s) and approaches you plan to use, and whether you are seeking
collaboration on specific aspects. The organizers will also add your team to the
list of participants on the website.

References

1. Wolfgang Ahrendt, Paula Herber, Marieke Huisman, and Mattias Ulbrich. Spec-
ifythis - bridging gaps between program specification paradigms. In ISoLA (1),
volume 13701 of Lecture Notes in Computer Science, pages 3–6. Springer, 2022.

2. Dirk Beyer. Advances in automatic software testing: Test-comp 2022. In FASE,
volume 13241 of Lecture Notes in Computer Science, pages 321–335. Springer, 2022.

3. Dirk Beyer. Progress on software verification: SV-COMP 2022. In TACAS (2),
volume 13244 of Lecture Notes in Computer Science, pages 375–402. Springer, 2022.

4. Martin de Boer, Stijn de Gouw, Jonas Klamroth, Christian Jung, Mattias Ulbrich,
and Alexander Weigl. Formal specification and verification of jdk’s identity hash map
implementation. In Maurice H. ter Beek and Rosemary Monahan, editors, Integrated
Formal Methods - 17th International Conference, IFM 2022, Lugano, Switzerland,
June 7-10, 2022, Proceedings, volume 13274 of Lecture Notes in Computer Science,
pages 45–62. Springer, 2022.

5. Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot,
and Dominic Steinhöfel. Verifying openjdk’s sort method for generic collections. J.
Autom. Reasoning, 62(1):93–126, 2019.

6. Gidon Ernst, Marieke Huisman, Wojciech Mostowski, and Mattias Ulbrich. Veri-
fythis - verification competition with a human factor. In TACAS (3), volume 11429
of Lecture Notes in Computer Science, pages 176–195. Springer, 2019.

7. Jean-Christophe Filliâtre, Andrei Paskevich, and Aaron Stump. The 2nd verified
software competition: Experience report. In Vladimir Klebanov, Bernhard Beckert,
Armin Biere, and Geoff Sutcliffe, editors, Proceedings of the 1st International
Workshop on Comparative Empirical Evaluation of Reasoning Systems, Manchester,
United Kingdom, June 30, 2012, volume 873 of CEUR Workshop Proceedings, pages
36–49. CEUR-WS.org, 2012.

8. Reiner Hähnle and Marieke Huisman. Deductive software verification: From pen-
and-paper proofs to industrial tools. In Bernhard Steffen and Gerhard J. Woeginger,
editors, Computing and Software Science - State of the Art and Perspectives, volume
10000 of Lecture Notes in Computer Science, pages 345–373. Springer, 2019.

9. M. Huisman, R. Monahan, W. Mostowski, P. Müller, and M. Ulbrich. VerifyThis
2017: A program verification competition. Technical report, Karlsruhe Reports in
Informatics, 2017.

10. M. Huisman, R. Monahan, P. Müller, A. Paskevich, and G. Ernst. VerifyThis 2018:
A program verification competition. Technical report, Inria, 2019.

11. M. Huisman, R. Monahan, P. Müller, and E Poll. VerifyThis 2016: A program
verification competition. Technical Report TR-CTIT-16-07, Centre for Telematics
and Information Technology, University of Twente, Enschede, 2016.

13

https://www.lists.kit.edu/sympa/info/verifythis-ltc
https://www.lists.kit.edu/sympa/info/verifythis-ltc

12. Marieke Huisman, Vladimir Klebanov, and Rosemary Monahan. VerifyThis 2012.
Int. J. Softw. Tools Technol. Transf., 17(6):647–657, November 2015.

13. Marieke Huisman, Vladimir Klebanov, Rosemary Monahan, and Michael Tautschnig.
VerifyThis 2015. A program verification competition. Int. J. Softw. Tools Technol.
Transf., 19(6):763–771, 2017.

14. Marieke Huisman, Raúl Monti, Mattias Ulbrich, and Alexander Weigl. The verifythis
collaborative long term challenge. In Wolfgang Ahrendt, Bernhard Beckert, Richard
Bubel, Reiner Hähnle, and Mattias Ulbrich, editors, Deductive Software Verification:
Future Perspectives: Reflections on the Occasion of 20 Years of KeY, volume 12345 of
Lecture Notes in Computer Science, chapter 10, pages 246–260. Springer, December
2020.

15. Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Valentin
Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish, Rod Chapman, Ernie Cohen,
Mark Hillebrand, Bart Jacobs, K. Rustan M. Leino, Rosemary Monahan, Frank
Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans, Stephan Tobies, Thomas
Tuerk, Mattias Ulbrich, and Benjamin Weiß. The 1st Verified Software Compe-
tition: Experience report. In Michael Butler and Wolfram Schulte, editors, 17th
International Symposium on Formal Methods (FM 2011), volume 6664 of LNCS,
pages 154–168. Springer, 2011.

16. Wytse Oortwijn, Marieke Huisman, Sebastiaan Joosten, and Jaco van de Pol.
Automated verification of parallel nested DFS, 2019. Submitted.

14

A Communication Examples

The following listing is an example of the communication between a client and
the memcached server. Lines starting with “>” are sent by the client, lines marked
with “<” are sent by the server. We added line comment marked by # given further
information. \r\n are represented by line breaks.

telnet localhost 11211

> set abc 16 120 5 # flag: 16, TTL: 120 s, len: 5 bytes

> 12345

< STORED

> gets abc def # request two keys

< VALUE abc 16 5 18 # flag: 16, len: 5, cas: 18

< 12345

< END # Note the missing response for key "def"

> incr abc 10

< 12355

> decr abc 10

< 12345

> append abc 8 120 1

> 0

< STORED

> get abc

< VALUE abc 16 6 # get does not return cas value!

< 123450

< END

> prepend abc 4 120 1

> 9

< STORED

> get abc

< VALUE abc 16 7

< 9123450

< END

B History of the VerifyThis and the Long-term Challenges

VerifyThis on-site events comprise short-term exercises with strict time constraint,
typically 1–2h, with a focus on competing. In contrast, with this long-term
challenge, we want to foster collaboration between the participants to show what
can finally be done by using program verification techniques in a mission-critical
realistic, industrial-size software.

15

The first VerifyThis long-term challenge [14] was dedicated to Hagrid,
a verifying key server for public PGP keys; it is the successor of the SKS key
server, which has multiple security vulnerabilities, for example uploading PGP
keys for arbitrary user identities. Hagrid introduces a side-channel (E-Mail)
to verify the ownership of an email address to address this issue, such that the
published association between an E-Mail address (“identity”) and keys on the
server agrees with the intention of the account holder. The outcome of this
challenge is a number of working prototypes, system specifications and models,
as well as proofs, which together illustrate the various properties like functional
correctness and security.

The Casino challenge5 arose from a series of online discussions. It is about
security of a block-chain smart contract that models a simple coin guessing game,
in which players can bet money against the operator of the game. The challenge
has sparked many interesting contributions, which looked into aspects specific to
block-chain, such as the way state is stored permanently and publicly and how
the transaction-based execution semantics and re-entrant interact with respect
to the transfer and potential loss of money. An overview can be found in [1].

There are two take-aways from the past challenges, which will serve as key
guiding factors in the choice and setup of the second long-term challenge:

– A wide range of approaches and tools can contribute very different and
complementary insights into a specification and verification problem like the
Casino.

– As a consequence, system-level models and specifications (e.g. in terms of
automata or traces) are contrasted to state-based methods and contract-based
approaches (in terms of pre-/post relations)

To accommodate both, we want to foster the development of approaches resp.
tools that can deal with both views in a more integrated way. More importantly,
we want to encourage that the collaboration between participating teams is
structured around these two aspects as outlined in this document.

5 https://verifythis.github.io/casino/

16

https://verifythis.github.io/casino/

	2nd VerifyThis Long-term Challenge: Specifying and Verifying a Real-life Remote Key-Value Cache (memcached)

