
1/15

Specifying Components with Automata
for the VerifyThis Long Term Challenge

Gidon Ernst, Marieke Huisman, Raúl Monti,
Mattias Ulbrich and Alexander Weigl

2021-02-12

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



2/15

Today’s Agenda

1. Questions from the Mail

Thanks for the feedback via mail!
In particular: Look at a few ideas for a state machine base

specification.

2. Discussion
Are state machines/automata a good specification language for

black-box components to achieve common goals, i.e., as an

interface between tools and approaches, and at what level

(technical, conceptual)?

3. Continuity
What would be a good follow-up challenge, with potential impact

and chances for collaboration?

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



3/15

Mail Questions

?
When you think about formal methods in software
development, what technique comes to your mind

first?

=⇒ Poll

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



4/15

Mail Questions

Complete the following sentence: “For me, an ‘automaton’
in the context of formal program specification is . . . ”
I a representation of state + a transition function

(→ Abstr. State Machines)

I a type describing state + a family of transition functions
+ invariants

I (partial) specification representation as a model + guarded
transitions + external events

I a state transition system with high abstraction level

I a state transition system with explicit (complex) data + data
evolution

I model for both (technical) system and environment

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



5/15

Mail Questions

If you reconsider the HAGRID system, how would the toplevel
specification of the system for key registration/removal look
like in a stateful specification language?

We look at a meshup of the suggested solutions.

(We received some more hints that other solutions are in the
pipeline, or could be obtained from existing submissions)

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



6/15

Hagrid Seen as a Blackbox Component

g
User

3

upload

confirm

get

revoke

I operations receive and return immutable data

I operations modify a self-contained state

I not every operation may be invoked at all times

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



7/15

Modeling (email , key) State Transitions

Per email/key pair: M(email , key)

Entire System: M(email1, key1) ‖ · · · ‖ M(emailn, keyn)

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



8/15

Example State

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



9/15

Automaton for Key Lifecycle Contract

Globals: Ks : set(String)

Locals:
K : String
V : String
C : String?

upl

conf

rev

upload(k,v)=c, pre k6∈Ks /
V:=v; C:=c; K:=k; Ks:=Ks∪{k}

confirm(c), c=C

revoke(k), pre k=K

revoke(k), pre k=K

get(k)=v, pre k=K /
post v=V

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



10/15

Single Automaton (Event-B)

MACHINE KeyServer

SEES Datatypes

VARIABLES database openUpls openRevokes

INVARIANTS

databaseType: database ∈ EMAIL↔ KEY

noSpuriousDels: ran(openRevokes) ⊆ database

disjointConfirms: dom(openRevokes) ∩ dom(openUpls) = ∅
. . .

EVENTS I initialize . . .
I upload . . .
I confirm . . .
I revoke . . .

[see Event-B-Model on Homepage]

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



11/15

The Two Faces of the Specification

Outside: Environment
Inside: the component

Obligations: ? ? ?

Gains: ? ? ?

Constructs: ? ? ?

Inside: the component

Obligations: ? ? ?

Gains: ? ? ?

Constructs: ? ? ?

Clients,
Users,

...

Code

/*@

Stateful specification

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



12/15

In JML

1 interface Hagrid {
2 //@ ghost \seq state; // sequence of States
3 //@ ghost \set allKeys; // set of Strings
4

5 /*@ forall int i; 0 <= i < state.length;
6 @ requires state[i].key.equals(key);
7 @ ensures \result == state[i].value;
8 @ assignable \strictly_nothing;
9 @*/

10 String get(String key);
11

12 /*@ requires !(key \in allKeys);
13 @ ensures state == \old(state) + [(key, value, \result)];
14 @ ensures allKeys == \old(allKeys) + {key};
15 @ assignable this.footprint;
16 @*/
17 String upload(String key, String value);
18 }

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



13/15

In Why3 [by JC Filiâtre]

type state = { ghost mutable keys: email -> key; ... }
invariant { ... }

The type state contains one or several ghost mutable fields, that
describe the contents of the state. Invariants are attached to this
type. The global state itself is then declared as a global variable of
that type:

val global_state: state

Finally, operations are declared as follows:

val add_key (e: email) (k: key) : token
writes { global_state } requires { ... } ensures { ... }
val confirm_add_key: ...
writes { global_state } ...

val find_key: ...
reads { global_state } ...

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



14/15

Potential Discussion Points

Interesting questions include:

I What is the right formalism?

I How does it relate to ghost code?

I How does it relate to design-by-contract?

I What is the specified entity? (a ”component”?)

I Can this bring model checking and deduction into one
integrated verification approach?

I Is this suited for lightweight and/or heavyweight specification?

I Safety properties only? Security too?

I Can be used for separation of concerns?

I . . .

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata



15/15

And now?

I Integrated approach from abstract model to code?

I Which formalisms?

I Tool-driven or theory-only?

I Remain with HAGRID or move on? Where?

I Next steps. Further meeting with a more concrete agenda?

G.Ernst, M.Huisman, R.Monti, M.Ulbrich and A.Weigl Specifying Components with Automata


