
VerifyThis
The Long-term Challenge

Marieke Huisman, Raúl Monti,
Mattias Ulbrich, Alexander Weigl

November 27, 2020

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



Tradition of VerifyThis

I VerifyThis – “Verification Competition with a Human Factor”

I On-site event – bringing people together, foster discussions

I Yearly Workshop at ETAPS

VerifyThis – The Long-term Challenge
https://verifythis.github.io

I 6 months time

I Security / Safety real relevant system

I Reference implementation, can be reimplemented

I Requirements given in natural language

I Various degrees of abstraction possible

I Collaboration explicitly promoted

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge

https://verifythis.github.io


Today

Plan for today:

I Brief introduction to the Long Term Challenge

I Open discussion on program specification (and verification)

I Guided by few questions

I Concerning the target of the challenge . . .

I . . . but generalising beyond the very concrete points.

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



Verification Target

I Security issues (anyone can upload keys)

I Denial of service attack (“monster key”)

Solution
The Verifying Key Server

Even better solution
The Verified Verifying Key Server

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



Verification Target

Verification Target: The Verifying Key Server

g
User

Web Server

3

Backend

¤

get

add

del

confirm

confirm?

I Reference Implementation: HAGRID.

I Deployed as default key server keys.openpgp.org

I Prototypical example of a stateful, responsive system

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge

https://keys.openpgp.org


Missions (extract)

1. Safety Verify that the implementation of the key server does
not exhibit undesired runtime effects (no runtime exceptions
in Java, no undefined behaviour in C, ...)

2. Functionality Specify and verify that if an e-mail address
is queried, the respective key is returned if there is one.

3. Pricacy Specify and verify that if an e-mail address has
been deleted from the system, no information about the
e-mail adress is kept in the server.

4. Thread safety Prove that your implementation is free of
data races.

5. Termination Prove that any operation of the server
terminates.

. . .

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



Contributions

I Ernst and Rieger:
Information Flow Testing of a PGP Keyserver

I Diverio, Loureno and Marché:
”You-Know-Why”: an Early-Stage Prototype of a Key Server
Developed using Why3

I de Gouw, Ulbrich and Weigl:
The KeY Approach on Hagrid

I Dross, Kanig, and Moy:
A Solution to the Long-Term Challenge in SPARK

I Ernst, Murray and Tiwari:
Verifying the Security of a PGP Keyserver

I Ulbrich: (not in proceedings)
Event-B Formalisation of the Key Manager

Proceedings:
https://publikationen.bibliothek.kit.edu/1000119426

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge

https://publikationen.bibliothek.kit.edu/1000119426


Verification Target

Verification Target: The Verifying Key Server

g
User

Web Server

3

Backend

¤

get

add

del

confirm

confirm?

(Slides with more details on the webpage)

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



Guiding Questions
Specification Aspects

I What purposes (apart from verification) can a specification have?

I What should a specification express?
I whitebox props like concurrency (implementation-dependent)
I blackbox props like security? (implementation-independent)
I other characterisations?

I What are the reasons that formal specs are little used in practice?

Contracts

I Are constracts the right specification methodology for HAGRID?

I How to specify such services/protocols? Databases?

I Whats the best abstraction level for a contract language?

I One specification language or several langs for spec. aspects/abstr. levels?

I Are there ”core clauses”?

Verification Tools

I Which symbolic debugging ideas can be used for formal verification?

I Is guiding the prover in specs via annotations a good idea?

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



Natural Language Specifications

Requirements for retrieving a key
get(e : email) returns k : key ∪ {⊥}

Pre none
Post If k 6= ⊥, then the returned key k is associated with the given

email address e in the database.
k = ⊥ iff there exists no entry for the given address e.

Effects No changes on the database or pending (add or delete) con-
firmations.

Requirements for adding a key
add(e : email, k : key) returns c : conf-code

Pre e and k are well-formed entities. e is an e-mail address to
which the public key k applies. The tuple (e, k) may or may
not already be present in the database or a confirmation for
(e, k) may be pending.

Post The confirmation code c is unique in the system. If (e, k) is
present in the database, ... If a request is pending for (e, k),
...

Effects The database remains unchanged. All pending confirmations
are preserved. The only effect of the operation is that a con-
firmation request (c , k , e) may be added.

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge



And now?

How do we continue from here?

Huisman, Monti, Ulbrich, Weigl VerifyThis– Long-term Challenge


