
A Solution to the Long-Term Challenge in
SPARK

Claire Dross, Johannes Kanig, and Yannick Moy

AdaCore, 75009 Paris

1 Introduction

SPARK [2] is a programming language designed to be amenable to formal veri-
fication. In addition to the standard features of a procedural programming lan-
guage, it contains standard annotations such as pre- and postconditions and
annotations of effects on global variables. SPARK is a subset of the Ada lan-
guage [1], so it can be compiled to machine code, e.g. using the GNAT compiler.
It can also be freely mixed with (unverified) Ada code.

We have applied SPARK to the key server described in the long-term chal-
lenge. Our goal was to get a working prototype, so we did some simplifications
in order to move quicker. For example, our prototype uses in-memory storage
(simple lists) to store the key server data, as opposed to using external storage.
This means that if our key-server is switched off, it will lose all data.

The code is available at https://github.com/AdaCore/Lumos Maxima.

2 Overview of the Code

The central piece of verified code is the implementation of the server API
in server.adb. In this code we verified absence of runtime errors, but also
quite strong postconditions. Here are the declarations for Request Add and
Verify Add, including their contracts:

procedure Request_Add
(Email : Email_Id;
Key : Key_Id;
Token : out Token_Type)

with
Pre ⇒ Invariant,
Post⇒ Invariant

and Contains (Seen_Tokens, Token)
and Email = Get_Email (Seen_Tokens, Token)
and Key = Get_Key (Seen_Tokens, Token)
and Is_Add (Seen_Tokens, Token)
and Seen_Tokens’Old ≤ Seen_Tokens;

procedure Verify_Add
(Token : Token_Type;
Status : out Boolean)

with
Pre ⇒ Invariant,
Post⇒ Invariant

and (if Status

https://github.com/AdaCore/Lumos_Maxima


2 Claire Dross, Johannes Kanig, and Yannick Moy

then Contains (Seen_Tokens, Token)
and Is_Add (Seen_Tokens, Token)
and Model’Old ≤ Model
and Included_Except
(Model, Model’Old,

(Get_Key (Seen_Tokens, Token), Get_Email (Seen_Tokens, Token)))
and Contains
(Model,

(Get_Key (Seen_Tokens, Token), Get_Email (Seen_Tokens, Token)))
else Model = Model’Old)

and Seen_Tokens’Old ≤ Seen_Tokens;

As one can see, we prove that Request Add returns a token with the proper
information attached, and this token represents a request to add a key (ex-
pressed with Is Add). Once Verify Add is called, the key/email pair is added
to the database (this is expressed using the Model variable). The code for
Request Remove and Verify Remove is similar.

In total, five units (files) with 500 lines of code have been verified with SPARK
Pro 20.1, out of 10 units with 1300 lines. The total running time of the proof tool
on an 8-core/16-threads AMD Ryzen 1700x is roughly 1 minute from scratch,
and roughly 30 seconds to replay all proofs using an existing session.

3 Difficulties and Workarounds

We found that SPARK proofs worked best when storing basic data such as
integers in the central database, and not more complex data such as strings.
The reason seems to be that the containers that we use rely heavily on equality
for their specifications, and the equality for complex types is much heavier and
degrades proof performance. This issue prevented us from writing natural code
where e.g. email addresses would be represented directly by strings. We worked
around this situation by interning strings in a separate table, and referring to
the table indices instead of the actual strings. The string interning code is also
proved.

4 The Missions of the Challenge

We addressed mission 0 (identify relevant properties) by defining the design of
our software and writing postconditions, mission 1 (safety) by proving absence of
runtime errors, mission 2 (functionality) by proving the specified postconditions,
and finally mission 6 (termination) by adding termination annotations. Proof of
termination only required a single loop variant.

We did not address mission 3 (protocol), mission 4 (privacy), mission 5
(thread safety) and mission 7 (randomness), which are out of scope for SPARK.
Proof of thread-safety is possible in SPARK, though the analysis is quite restric-
tive - threads cannot access memory that is potentially written by other threads
unless these accesses are protected against race conditions. Also, this analysis
requires the use of Ada tasking and no other mechanisms, and visibility over all
tasks (not the case in our prototype, where tasks might be created by the web
server).



A Solution to the Long-Term Challenge in SPARK 3

5 Additional Unverified Code

To get a working example, we wrote some unverified Ada code. This code starts
a web server using the AWS (Ada Web Server 1) framework and dispatches
incoming requests to the various API functions. It also extracts emails from
the submitted public key, so that the API functions can be called directly with
interned email addresses. With reasonable additional effort, the percentage of
verified code could be increased, to leave only the code directly related to AWS
requests unproved.

When a user connects to the interface, a welcome page is presented with
links to the subpages to query existing keys by email or adding a new key. On
the page to add a new key, the user can insert a public key (the begin and end
markers of a typical public key need to be removed here). From this key, the
code extracts the email address, creates the request token from the interned
email/key pair and returns the token to the user. To simplify the setup, we show
the confirmation link directly in the browser instead of emailing it. This would
of course have to change for a production implementation. The code invoked by
this link then inserts the (interned) email/key pair into the database.

References

1. Barnes, J.: Programming in Ada 2012. Cambridge University Press (2014)
2. McCormick, J. W., Chapin, P. C.: Building high integrity applications with SPARK.

Cambridge University Press (2015)

1 https://www.adacore.com/gnatpro/toolsuite/ada-web-server

https://www.adacore.com/gnatpro/toolsuite/ada-web-server

	A Solution to the Long-Term Challenge in SPARK

