
Verifying the Security of a PGP Keyserver
(Abstract for the VerifyThis challenge 2020)

Gidon Ernst1, Toby Murray2, and Mukesh Tiwari2

1 LMU Munich, gidon.ernst@lmu.de
2 University of Melbourne, Australia, firstname.lastname@unimelb.edu.au

1 Introduction

We discuss our approach and progress concerning the formal verification of the
HAGRID PGP keyserver, as part of the VerifyThis 2020 Collaborative Long-
term Verification Challenge.

2 Approach

We have followed an iterative approach to the formalisation of the case study
and its verification, building on the work of related teams [3]. Specifically, we
took Ernst and Rieger’s Scala model of the key server as a starting point. This
model represents the state of the key server as a collection of maps, and has a
small number of top-level functions that manipulate these maps and simulate
actions like sending emails.

2.1 Abstract Specification

We began by constructing an abstract specification for the Scala model, in the
spirit of typical Alloy specifications [4]. Here, the state is modelled as a collection
of partial functions, each of which represents a map in the Scala model. For
instance, the keys map stores the uploaded keys, indexed by their fingerprints;
the uploaded map remembers which keys have been uploaded and is indexed by
the token that was issued for each; the prev-tokens set remembers previously
issued tokens (in order to specify that newly generated tokens should be fresh).

record state =
keys :: fingerprint ⇀ key
uploaded :: token ⇀ fingerprint
prev-tokens :: token set
. . .

Top-level operations of the Scala model are then specified as relations on
these states, describing how the state after the operation is related to the state
before the operation. These specifications are carefully written to delineate pre-
conditions and postconditions.

For instance, the precondition for the upload operation to upload a key k is
a predicate on the pre-state s, and states that if a key with the same fingerprint
of k has already been uploaded, then that key must be identical to k :

upload-pre(k,s) ≡ k.fingerprint ∈ dom(s.keys) =⇒ s.keys(k.fingerprint) = k

The postcondition for the upload operation requires that a fresh token is
generated for the key and that the key is added to the keys and uploaded maps.

upload-post(k,s,s’) ≡ ∃ t. t /∈ s.prev-tokens ∧
s’.keys = s.keys ∪ (k.fingerprint 7→ k) ∧
s’.uploaded = s.uploaded ∪ (t 7→ k.fingerprint) ∧
s’.prev-tokens = s.prev-tokens ∪ {t}

Having delineated their pre- and post-conditions, operations are specified
straightforwardly. For instance, the specification of the upload operation for up-
loading a key k, given pre- and post-states s and s’ respectively, is:

upload(k,s,s’) ≡ if upload-pre(k,s) then upload-post(k,s,s’) else s’ = s

We have experimented with encoding this abstract specification in both Coq
and Isabelle/HOL, and with formalising and proving invariant preservation over
its operations.

2.2 Verified Model

While aiding clarity, the purpose of delineating pre- and post-conditions in the
abstract specification was to serve as a guide for subsequent Hoare logic reasoning
about the system. Specifically, while currently still in progress, the next step
of our approach involves constructing a model of the system that refines the
abstract specification and about which we can reason using a Hoare logic style
program verifier.

In our approach, we chose to use the prototype SecC verifier, which auto-
mates program reasoning in the Hoare style logic Security Concurrent Separation
Logic (SecCSL) [2]. SecCSL is a variant of Concurrent Separation Logic that
allows reasoning about expressive information flow security policies, in addition
to ordinary Hoare logic reasoning.

Information Flow Security Policies Such policies abound in the key server. For
instance, when returning results pertaining to the lookup of a key k, data about
all other keys should be considered private and not revealed. Additionally, how-
ever, whether a particular identity id ∈ k.ids, attached to the key k should
be revealed depends on whether that identity has been confirmed. Thus only
confirmed identities for the key k should be considered public. The resulting
information flow policy for this seemingly simple operation is therefore highly
state-dependent. SecCSL and SecC provide natural support for verifying such
stateful policies.

Dynamic Declassification Note, however, that the security policy is not fixed: the
action of confirming an identity associated with key k effectively declassifies [5]
the resulting identity, making it public with respect to a lookup for key k.

SecC supports this style of reasoning via assume statements. Whereas tra-
ditional Hoare logic verifiers are able to assume only functional properties, in
SecCSL such assumptions can naturally encompass security assertions. For in-
stance the statement “assume (e::low)” literally means “let us assume that the
data contained in the expression e is known to the attacker” [1].

Ensuring Correct Declassification Assume statements are therefore powerful for
reasoning about dynamic declassification policies. However, we also need to make
sure that they are not mis-used. For example, it is appropriate to place an
assume statement at the point that an identity id is confirmed for key k, which
declassifies id with respect to lookups of key k. However, the assume statement
would not be appropriate if it declassified id with respect to some other key k’
or if it did so before id was confirmed. Therefore, how can we make sure that
assume statements are used correctly to encode the desired declassification
policy?

To address this issue, our methodology encodes the declassification policy
via an extensional predicate that talks just about the program’s inputs and
outputs (i.e. not about its internal state), inspired by [6]. Then at the site of
each assume statement, we immediately precede the assume statement with an
assert statement to check that the extensional declassification predicate holds
(i.e. allows the declassification encoded in the assume statement to occur).

Doing so allows us to verify expressive declassification policies naturally via
assume statements, free of the risk that we inadvertently verify the model
against the wrong policy.

References

1. Chudnov, A., Naumann, D.A.: Assuming you know: Epistemic semantics of rela-
tional annotations for expressive flow policies. In: IEEE Computer Security Foun-
dations Symposium (CSF). pp. 189–203. IEEE (2018)

2. Ernst, G., Murray, T.: SecCSL: Security Concurrent Separation Logic. In: Inter-
national Conference on Computer Aided Verification (CAV). pp. 208–230. Springer
(2019)

3. Ernst, G., Rieger, L.: Information flow testing of a PGP keyserver (abstract for the
verifythis challenge 2020) (2020)

4. Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press (2012)
5. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of

Computer Security 17(5), 517–548 (2009)
6. Schoepe, D., Murray, T., Sabelfeld, A.: Veronica: Expressive and precise concur-

rent information flow security. In: IEEE Computer Security Foundations Symposium
(CSF) (2020), to appear.

	Verifying the Security of a PGP Keyserver (Abstract for the VerifyThis challenge 2020)

