
Int J Softw Tools Technol Transfer (2017) 19:763–771
DOI 10.1007/s10009-016-0438-x

REGULAR PAPER

VerifyThis 2015
A program verification competition

Marieke Huisman1 · Vladimir Klebanov2 · Rosemary Monahan3 ·
Michael Tautschnig4

Published online: 18 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract VerifyThis 2015 was a one-day program verifi-
cation competition which took place on April 12th, 2015 in
London, UK, as part of the European Joint Conferences on
Theory and Practice of Software (ETAPS 2015). It was the
fourth instalment in the VerifyThis competition series. This
article provides an overview of the VerifyThis 2015 event,
the challenges that were posed during the competition, and
a high-level overview of the solutions to these challenges. It
concludes with the results of the competition and some ideas
and thoughts for future instalments of VerifyThis.

Keywords Deductive verification · Program Verification
Tools · Competition · VerifyThis

1 Introduction

VerifyThis 2015 took place on April 12th, 2015 in London,
UK, as a one-day verification competition in the Euro-
pean Joint Conferences on Theory and Practice of Software
(ETAPS 2015). It was the fourth edition in the VerifyThis

B Marieke Huisman
m.huisman@utwente.nl

Vladimir Klebanov
klebanov@kit.edu

Rosemary Monahan
Rosemary.Monahan@nuim.ie

Michael Tautschnig
michael.tautschnig@qmul.ac.uk

1 University of Twente, Enschede, The Netherlands

2 Karlsruhe Institute of Technology, Karlsruhe, Germany

3 Maynooth University, Maynooth, Ireland

4 Queen Mary University of London, London, United Kingdom

series after the competitions held at FoVeOOS2011, FM2012
and Dagstuhl (Seminar 14171, April 2014).
The aims of the competition were:

– to bring together those interested in formal verification,
and to provide an engaging, hands-on, and fun opportu-
nity for discussion;

– to evaluate the usability of logic-based program verifica-
tion tools in a restricted setting that can be easily repeated
by others.

This article provides an overview of the VerifyThis 2015
event, the challenges that were posed during the competition,
and a high-level overviewof the solutions to these challenges.
While we do not provide guidance on how to perform an
in-depth evaluation of the participating tools, we highlight
the main tool features that were used in solutions. We con-
clude with the results of the competition, and some ideas and
thoughts for future instalments of VerifyThis.

Before theVerifyThis competitions (and the related online
VS-Comp competitions) were launched, verification systems
were only evaluated according to the size of the completed
project. However, due to the size and complexity of the ver-
ification efforts, such experiments could not be reproduced.
Furthermore, the efficiency of the verification could not be
measured, as they were carried out over prolonged periods
of time, by multiple people, with different background, and
without proper time accounting.

VerifyThis, in contrast, shifts the measurement to effi-
ciency. Typical challenges in the VerifyThis competitions
are small but intricate algorithms given in pseudo-code with
an informal specification in natural language. Participants
have to formalise the requirements, implement a solution,
and formally verify the implementation for adherence to
the specification. There are no restrictions on the program-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0438-x&domain=pdf

764 M. Huisman et al.

ming language and verification technology used. The time
frame to solve each challenge is quite short (between 45
and 90min), so that anyone can easily repeat the experi-
ment. Thus, the competition setup can be easily reproduced
by anyone, the challenges are self-contained, time is con-
trolled, and establishing the relation between specification
and implementation is straightforward.

The correctness properties which the challenges present
are typically expressive and focus on the input–output behav-
iour of programs. To tackle them to the full extent, some
human guidancewithin a verification tool is usually required.
At the same time, considering partial properties or simplified
problems, if this suits the pragmatics of the tool, is encour-
aged. The competition welcomes participation of automatic
tools as combining complementary strengths of different
kinds of tools is a development that VerifyThis would like to
advance.

Submissions are judged for correctness, completeness,
and elegance. The focus includes the usability of the tools,
their facilities for formalising the properties, and providing
helpful output. As each solution depends on different tools
and different participants, creativity is an important factor
in the competition. However, correctness and completeness
are relatively objective criteria, and one can estimate approxi-
mately how close the team is to a completely verified solution
of the challenge.

Experiences with earlier editions of VerifyThis have
shown that participation leads to insight in: (i) missing
tool features, (ii) useful features, which helped other teams
to develop their solutions, and (iii) tool features which
are awkward to use and need further improvement and
testing. It is difficult to quantify the concrete effects on
tool development, but when judging, we see that insights
obtained during earlier competitions actually lead to new
tool developments. Moreover, the VerifyThis challenges
are also used as verification benchmarks outside of the
competition.

1.1 VerifyThis 2015

VerifyThis 2015 consisted of three verification challenges.
Before the competition, an open call for challenge submis-
sions was made. As a result, six challenges were submitted,
of which one was selected for the competition (see also
Sect. 5.5 for more details about this call and the selec-
tion criteria). The challenges (presented later) provided
reference implementations at different levels of abstraction.
For the first time, one of the challenges centered around
concurrency.

Fourteen teams participated (Table 1). Teams of up to
two people were allowed and physical presence on site was
required. We particularly encouraged participation of:

– student teams (this includes PhD students);
– non-developer teams using a tool someone else devel-
oped;

– several teams using the same tool.

Teams using different tools for different challenges (or even
for the same challenge) were welcome.

As in the VerifyThis 2012 competition, after the compe-
tition, a post-mortem session was held, where participants
explained their solutions and answered the judges questions.
In parallel, the participants used this half-day session to dis-
cuss details of the problems and solutions among each other.

The website of the 2015 instalment of VerifyThis can be
found at http://etaps2015.verifythis.org/. More background
information on the competition format and the rationale
behind it can be found in [10]. Reports from previous com-
petitions of similar nature can be found in [2,8,15], and in
the special issue of the international journal on software tools
for technology transfer (STTT) on the VerifyThis competi-
tion 2012 (see [11] for the introduction).

1.2 Rules

To ensure that the competition proceeded smoothly, the fol-
lowing rules were established:

1. The main rule of the competition is: no cheating is
allowed. The judges may penalise or disqualify entrants
in the case of unfair competition behaviour and may
adjust the competition rules to prevent future abuse.

2. Solutions are to be submitted by email.
3. Submissions must state the version of the verification

system used (for development versions, internal revision,
time-stamp, or similar unique id).

4. It is permitted to modify the verification system during
the competition. This is to be noted in the solution(s).

5. All techniques used must be general-purpose, and are
expected to extend usefully to new unseen problems.

6. Internet access is allowed, but browsing for problem solu-
tions is not.

7. Involvement of other people beyond those on the team is
not allowed.

8. While care is taken to ensure correctness of the reference
implementations supplied with problem descriptions, the
organisers do not guarantee that they are indeed correct.

2 Challenge 1: Relaxed Prefix (60 minutes)

This problem was submitted by Thomas Genet, Université
de Rennes 1, in response to the open call for challenges.

123

http://etaps2015.verifythis.org/

VerifyThis 2015 765

Table 1 Teams participating in VerifyThis 2015 (alphabetically by tool)

Team members Tool Team attributes

1 Nadia Polikarpova, Carlo Furia AutoProof [24]

2 Michael Tautschnig CBMC [18]

3 Rustan Leino Dafny [19]

4 Tim Wood Dafny —”— Student, non-developer

5 Robert Kelly, Marie Farrell Dafny —”— Student, non-developer

6 Aleksey Schubert Frama-C [14] Non-developer

7 Simon Forest, Jean Karim Zinzindohoué F* [22] Student

8 Daniel Bruns, Michael Kirsten KeY [1] Student

9 Gidon Ernst, Jörg Pfähler KIV [6] Student

10 Jan Friso Groote mCRL2 [5]

11 Jonathan Hoyland MoCHi [17] Non-developer

12 Stefan Blom, Saeed Darabi VerCors [4]

13 Bart Jacobs VeriFast [20]

14 Jean-Christophe Filliâtre, Guillaume Melquiond Why3 [7]

2.1 Verification task

Verify a function isRelaxedPrefix determining if a list pat
(for pattern) is a relaxed prefix of another list a. The relaxed
prefix property holds iff pat is a prefix of a after removing
at most one element from pat.
Examples

– pat = {1,3} is a relaxed prefix of a = {1,3,2,3}

(standard prefix)
– pat = {1,2,3} is a relaxed prefix of a = {1,3,2,3}

(remove 2 from pat)
– pat = {1,2,4} is not a relaxedprefixofa = {1,3,2,3}

Implementation notes One may implement lists as
arrays, e.g., of integers. A reference implementation is given
below. It may or may not contain errors.

publicpublicpublic classclassclass Relaxed {

publicpublicpublic staticstaticstatic booleanbooleanboolean isRelaxedPrefix(intintint[]
pat,intintint[] a){

intintint shift = 0;
forforfor(intintint i=0; i<pat.length; i++) {

ififif (pat[i]!=a[i-shift])
ififif (shift==0) shift=1;

elseelseelse returnreturnreturn falsefalsefalse;
}
returnreturnreturn truetruetrue;

}
publicpublicpublic staticstaticstatic voidvoidvoid main(String[] argv) {

intintint[] pat = {1,2,3};
intintint[] a1 = {1,3,2,3};
System.out.println(isRelaxedPrefix
(pat, a1));

}
}

2.2 Comments on solutions

Eleven teams (Verifast, Why3, AutoProof, KeY, Dafny (3
teams), mCRL2, F*, KIV, and VerCors) submitted a solu-
tion to this challenge. Difficulties that had been encountered
by the participants were mainly at the specification level:
getting the prefix definition correct, and making sure that
all cases were covered in the postconditions. In particular,
several teams forgot the case, where the length of the array
was less than the length of the prefix, or where the method
returned false. In the overall evaluation, the solution provided
by theWhy3 teamwas the only one to obtain full marks from
the judges.

During the verification, the main challenge was to find an
appropriate instantiation for the existential quantifier. Dif-
ferent solutions for this were used: the Why3 team brought
the specification into a particular syntactical shape that
enabled the SMT solver to guess the instantiation (in a post-
competition solution, this trick was replaced with an explicit
assertion); the KeY team and the AutoProof team used an
explicit return value, which avoided the need for existen-
tial quantification (witness computed by the program); Tim
Wood, using Dafny, used an explicit hint in the form of a trig-
ger annotation; the KIV team tried to address this by manual
instantiation; while Robert Kelly and Marie Farrell, using
Dafny, provided a recursive definition of a relaxed prefix.

2.3 Future verification tasks

For those who had completed the challenge quickly, the
description included a further challenge, outlined below. No
submissions attempting to solve the advanced challengewere
received during the competition.

123

766 M. Huisman et al.

Verification task: Implement and verify a function
relaxedContains(pat, a) returning whether a contains
pat in the above relaxed sense, i.e., whether pat is a relaxed
prefix of any suffix of a.

3 Challenge 2: Parallel GCD (60 minutes)

Various parallel algorithms for computing the greatest com-
mon divisor GCD(a,b) exist (cf. [23]). In this challenge,
we consider a simple Euclid-like algorithm with two par-
allel threads. One thread performs subtractions of the form
a:=a-b, while the other thread performs subtractions of the
form b:=b-a. Eventually, this procedure converges on the
GCD.

In pseudo-code, the algorithm is described as follows:

(
WHILEWHILEWHILE a != b DODODO

IFIFIF a>b THENTHENTHEN a:=a-b ELSEELSEELSE SKIPSKIPSKIP FIFIFI

ODODOD

||
WHILEWHILEWHILE a != b DODODO

IFIFIF b>a THENTHENTHEN b:=b-a ELSEELSEELSE SKIPSKIPSKIP FIFIFI

ODODOD

);
OUTPUTOUTPUTOUTPUT a

3.1 Verification task

Specify and verify the following behaviour of this parallel
GCD algorithm:

Input: two positive integers a and b

Output: a positive integer that is the greatest common divi-
sor of a and b

Synchronisation can be added where appropriate, but try to
avoid blocking of the parallel threads.
Sequentialisation If a tool does not support reasoning about
parallel threads, one may verify the following pseudo-code
algorithm:

WHILEWHILEWHILE a != b DODODO

CHOOSECHOOSECHOOSE(
IFIFIF a > b THENTHENTHEN a := a - b ELSEELSEELSE SKIPSKIPSKIP FIFIFI,
IFIFIF b > a THENTHENTHEN b := b - a ELSEELSEELSE SKIPSKIPSKIP FIFIFI

)
ODODOD;
OUTPUTOUTPUTOUTPUT a

3.2 Comments on solutions

Five teams (Verifast, mCRL2, KIV, CBMC, and VerCors)
submitted a solution to the concurrent version of this chal-
lenge; six teams [Why3, AutoProof, KeY, Dafny (2 teams)

and F*] submitted a solution to the sequentialised variant of
the challenge.

The solutions to the concurrent version of the challenge
were all very different in spirit. The submissions assumed
varying degrees of atomicity. In some formalisations, atomic
operations were the individual loads and stores, in others—
the loop body, yet in others—the evaluation of the loop
condition followed by the loop body. All formalisations
assumed sequential consistency though. All were also in
some aspect partial.

Bart Jacobs (VeriFast) developed a fine-grained con-
current solution, showing the specified postcondition but
assuming the necessary properties of the mathematical GCD
predicate. The solution uses “shared boxes”, which integrate
rely-guarantee reasoning into the separation logic of Ver-
iFast. Despite its significant complexity, the solution was
judged as the best among the submitted ones.

Closely following was a solution by Jan Friso Groote with
mCRL2. mCRL2 and CBMC are both bounded verification
tools and thus only checked correctness within limits on the
range of input parameters resp. the loop unwinding depth.
The mCRL2 solution elegantly used quantifiers to specify
the GCD postcondition.

The KIV team used a global invariant proof approach
but got stuck on the necessary GCD properties (while later
realising that they actually could have used GCD lemmas
from the KIV libraries). Finally, the VerCors team submit-
ted a solution, making use of the recently added support for
parallel blocks, but proving absence of data races only. Post-
competition they extended this to a full solution.

The judges were also impressed by the attempt of the
AutoProof team. In addition to proving correctness of the
sequentialised algorithm, they almost succeeded in proving
termination of the sequential version, assuming an appropri-
ate fairness condition.

The KIV team was not the only team that experienced
that well-developed libraries can help while solving a chal-
lenge. The Why3 team solved the sequentialised version of
this problem within 15min, because their tool has a power-
ful library with the necessary GCD lemmas, while Rustan
Leino (Dafny) struggled with this (sequentialised) challenge
because of the lack of appropriate Dafny libraries.

After the competition, Rustan Leino developed a Dafny
solution for the concurrent program, by writing a program
that explicitly encoded all the possible interleavings between
the different threads, while using explicit program counters
for each thread.

4 Challenge 3: Dancing Links (90 minutes)

Dancing links is a search technique introduced in 1979 by
Hitotumatu and Noshita [12] and later popularised by Knuth

123

VerifyThis 2015 767

Fig. 1 Graphic illustrationof dancing linkoperations (inspiredbyWim
Bohm)

[16]. The technique can be used to efficiently implement a
search for all solutions of the exact cover problem, which in
its turn can be used to solve Tiling, Sudoku, N-Queens, and
other related problems.

Suppose x points to a node of a doubly linked list; let L[x]
and R[x] point to the predecessor and successor of that node.
Then the operations

L[R[x]] := L[x];
R[L[x]] := R[x];

remove x from the list. The subsequent operations

L[R[x]] := x;
R[L[x]] := x;

will put x back into the list again. Figure 1 provides a graph-
ical illustration of this process.

4.1 Verification task

Implement the data structure with these operations, and spec-
ify and verify that they behave in the way described above.

4.2 Comments on solutions

Several participants reported that this had been a difficult
challenge, and in particular, it had taken them time to under-
stand the full details of the intended behaviour. Ten solutions
[Verifast, Why3, AutoProof, KeY, Dafny (2 teams), mCRL2,
F*, KIV, and CBMC] to the challenge were submitted. Dur-
ing the competition, the organisers clarified that the main
challenge was in managing the remove and unremove—
several elements can be removed and unremoved, but they
must be unremoved in reverse order (otherwise, the refer-
ences are not maintained). Furthermore, the list should either
be considered circular or removal of the first and last elements
not allowed.

Rustan Leino (using Dafny) was the only one to address
this challenge completely within the allocated time. He
reported that he found it much easier to reason about the list
using integers and quantifiers rather than using recursively
defined predicate(s). This observation was confirmed by the
Why3 team after completing a post-competition solution.

The AutoProof team welcomed the Dancing Links
challenge, as it was ideally suited for demonstrating their
recently developed technique called semantic collaboration
[21]. Semantic collaboration is intended to improve reason-
ing about objects collaborating as equals to maintain global
consistency (rather than doing so in a strictly hierarchical
manner).

5 Results, statistics, and overall remarks

We conclude this report with various data points and sum-
maries of results.

5.1 Awarded prizes and statistics

The judges unanimously decided to award prizes as follows:

– Best team: team Why3—Jean-Christophe Filliâtre and
Guillaume Melquiond;

– Best student team: team KIV—Gidon Ernst and Jörg
Pfähler;

– Distinguished user-assistance tool feature—awarded to
two teams:

– Why3 for the lemma library (as demonstrated by its
use in the competition);

– mCRL2 for a rich specification language in an auto-
mated verification tool.

– Best challenge submission: Thomas Genet for the
Relaxed Prefix problem, which was used as Chal-
lenge 1 in the competition.

– Tool used by most teams: Dafny.

The best student team received a 500Euro cash prize
donated by our sponsors while the best overall team received
150Euros. Smaller prizes were also awarded for the best
problem submission and the distinguished user-assistance
tool feature.

5.2 Statistics per challenge

– Relaxed prefix 11 submissions were received, of
which only the submission by Jean-Christophe Filliâtre
and GuillaumeMelquiond (Why3) was judged as correct
and complete.

– Parallel GCD 11 submissionswere received, ofwhich
the submission by Bart Jacobs (Verifast) was judged as
correct andmost complete. Six of the submitted solutions
were restricted to the sequential version of the challenge.

– Dancing Links 10 submissionswere received, ofwhich
only the submission byRustan Leino (Dafny) was judged
as correct and complete.

123

768 M. Huisman et al.

5.3 Travel grants

The competition had funds for a limited number of travel
grants for student participants. A grant covered the incurred
travel and accommodation costs up to EUR 250 for those
coming from Europe and EUR 500 for those coming from
outside Europe. Evaluation criteria were qualifications (for
the applicant’s career level), need (explained briefly in the
application), and diversity (technical, geographical, etc). Six
travel grants were awarded.

5.4 Post-mortem sessions

Two concurrent post-mortem sessions were held on the after-
noon of the competition (stretching to the day after the
competition, given the large number of participants). These
sessions were much appreciated, both by the judges and by
the participants. It was very helpful for the judges to be
able to ask the teams questions in order to better understand
and appraise their submissions. Concurrently, all other par-
ticipants presented their solutions to each other. We would
recommend such a post-mortem session for any on-site com-
petition. In future editions of the competition, we intend to
extend this aspect of the event as participants reported the
time used as invaluable, providing lively discussions about
the challenges, gaining knowledge about tools through pre-
senting challenge solutions to each other and exchanging
ideas about future tool developments and solution strategies.

5.5 Soliciting challenges

After much discussion at the previous competition, on how
to extend the problem pool and tend better to the needs of
the participants, we issued a call for challenges to extend the
problem pool. The call stipulated that:

– A problem should contain an informal statement of the
algorithm to be implemented (optionally with complete
or partial pseudo-code) and the requirement(s) to be ver-
ified.

– A problem should be suitable for a 60–90min time slot.
– Submission of reference solutions is strongly encour-
aged.

– Problems with an inherent language- or tool-specific bias
should be clearly identified as such.

– Problems that contain several subproblems or other
means of scaling difficulty are especially welcome.

– The organisers reserve the right (but no obligation) to use
the problems in the competition, either as submitted or
with modifications.

– Submissions from (potential) competition participants
are allowed.

We received six suggestions for challenges, and decided that
one was suited for use during the competition. This chal-
lenge was practical, easy to describe to participants, suitable
in duration for the competition, and could be easily adapted
to suit different environments. However, even though we
decided not to use all of the submitted challenges directly,1

the call for submissions provided inspiration for further chal-
lenges as well as insight in what people in the community
consider interesting, challenging and relevant problems for
THE state-of-the-art verification tools.

5.6 Session recording

This year, for the first time, the organisers encouraged the
participants to record their desktop during the competition
(on a voluntary basis). The recording would give insight into
the pragmatics of different verification systems and allow
the participants to learn more from the experience of oth-
ers deriving a solution. The organisers provided a list with
recording software suggestions, though so far only a solution
for Linux (Freeseer) could be successfully tested. The main
criteria are free availability, ease of installation, and lowCPU
load.

In general, participants agreed that recording could pro-
vide useful information, but, as far as we know, only the KIV
team actually made a recording.

5.7 Related events

VerifyThis 2015 is the 4th event in theVerifyThis competition
series. Related events are the Verified Software Competition
(VSComp, http://vscomp.org) held online, the Competition
on Software Verification (SV-COMP [3], http://sv-comp.
sosy-lab.org) focusing on evaluating systems in a way that
does not require user interaction,2 and the RERS Challenge
([9], http://www.rers-challenge.org), which is dedicated to
rigorous examination of reactive systems, using different
technologies such as theorem proving, model checking, pro-
gram analysis, symbolic execution, and testing.

VerifyThis is also a collection of verification prob-
lems (and solutions). Its counterpart is VerifyThus (http://
verifythus.cost-ic0701.org/)—a distribution of deductive
verification tools for Java-like languages, bundled and ready
to run in a VM. Both were created with support from COST
Action IC0701.

A workshop on comparative empirical evaluation of rea-
soning systems (COMPARE2012 [13]) was held at IJCAR
2012 in Manchester. Competitions were one of the main top-
ics of the workshop.

1 Primarily due to challenges being too complex for the available time
slots.
2 SV-COMP is associated with TACAS.

123

http://vscomp.org
http://sv-comp.sosy-lab.org
http://sv-comp.sosy-lab.org
http://www.rers-challenge.org
http://verifythus.cost-ic0701.org/
http://verifythus.cost-ic0701.org/

VerifyThis 2015 769

5.8 Judging criteria

Limiting the duration of each challenge assists the judging
and comparison of each solution. However, this task is still
quite subjective and hence difficult. Discussion of the solu-
tion with the judges typically results in a ranking of solutions
for each challenge. In future editions of the competition, we
envisage that each team would complete a questionnaire for
each challenge on submission. This would assist the judging
and would also encourage teams to reflect on their solutions.

Based on earlier experiences, the criteria that were used
for judging were:

– Correctness is the formalisation of the properties ade-
quate and fully supported by proofs? In essence, this is
a two-valued criterion, and a correct formalisation is a
must to consider the solution.

– Completeness are all tasks solved, and are all required
aspects covered? The judges used a rough estimate how
much of the proof was finished to come to a complete
solution. For example, if a team can show a full solution
developed the next day, this is used an indication of being
relatively close to the full solution within the time frame
of the competition.

– Readability can the submission be understood easily,
possibly even without a demo? Clearly, this is a more
subjective criteria, but as all the judges participated in
the post-mortem session, and have ample experiencewith
formal specification; therefore, the number of questions
about the formalisation is a good indication for this.

– Effort and time distribution what is the relation between
time expended on implementing the program vs. spec-
ifying properties vs. proving? The post-mortem session
was used to obtain information about this.

– Automation how much manual interaction is required,
and for what aspects? Again, the post-mortem session
was used to obtain information about this.

– Novelty does a submission apply novel techniques?3

Teams that used novel features are usually eager to pro-
vide this information during the post-mortem session.

A novelty for VerifyThis this year was the inclusion of a
judge with a background in software model checking (the
fourth author of this paper). He observed that the participants
could have been more critical, reflecting on their solutions.
To use the tools, often expert knowledge is necessary, and the
tools are not very good at providing feedback when a proof
attempt fails. For future competitions, he felt that the most
interesting aspect would be new insights, leading to further
improvements to the tool. This aspect was also mentioned

3 Here, the judges would primarily like to cite the semantic collabora-
tion technique demonstrated by the AutoProof team.

by some of the competition participants. It will be worth-
while investigating what novelties have resulted from earlier
competitions.

5.9 Post-competition discussion

Directly after the competition, before starting the post-
mortem session, a plenary discussion was held to gather the
opinion of the participants about the organisation of future
competitions. The following topics were discussed:

Challenges The participants agreed that it was inter-
esting and timely to have a concurrency-
related challenge. In general the feeling
was that it is good to have modular chal-
lenges, which can be broken down into
smaller subproblems.Therewas also a sug-
gestion to have challenges in the form:
given a verified program, extend it to…

Tool vs. user An interesting aspect remains regarding
what we are actually measuring: the tool
or the user. To focus more on measur-
ing the tool, the challenge descriptions
could include an informal description of
the necessary invariants. However, it was
also remarked that this might restrict the
variety of tools participating in the compe-
tition.
Another possibility, to help focus the com-
petition on the tools, would be to create
mixed teams, where you use a tool that you
do not know in advance (possibly with a
tutor). As a result of this discussion, in the
next edition of this competition, we plan
to start the day with a Dafny tutorial, fol-
lowed by an out-of-competition challenge,
open to anybody interested in participat-
ing.

Timing The program as it is now, is very dense.
A slightly larger break between the chal-
lenges would be welcome.
Since participants often continue working
on their solutions after the competition, a
post-competition deadline to submit solu-
tions would also be welcomed.
The possibility of providing all challenges
to the competitors at the same timewas dis-
cussed, such that participants can organise
their own time to work on a challenge. In
that case, to avoid two person teams hav-
ing an advantage over single person teams,
because they can distribute the work, all

123

770 M. Huisman et al.

teams would be allowed the use of only
one computer.

Reporting There was much discussion about the pos-
sibility of publishing details from these
competitions. There have been several
competition report papers, and there has
been a special issue of STTT on the Ver-
ifyThis competition in 2012. New publi-
cations need to provide new insights. One
possibility is to encourage several partic-
ipants to write a joint paper about one
particular challenge, where they compare
their different solutions. Another possibil-
ity is to reach an agreement with an editor
to publish a series of competition reports,
summarising the main facts of the compe-
tition.
In general, the participants agreed that it is
important to make the (polished) solutions
publicly available for others to inspect and
compare. The solutions of the best stu-
dent team prize winners, the KIV team,
are available at https://swt.informatik.uni-
augsburg.de/swt/projects/verifythis-
competition-2015/, while solutions of the
best overall team prize winners, the Why3
team, are available at http://toccata.lri.
fr/gallery/why3.en.html. For further solu-
tions to competition challenges, we refer
to http://etaps2015.verifythis.org/.

5.10 Final remarks

The VerifyThis 2015 challenges have offered a substantial
degree of complexity and difficulty. A new development
compared to earlier editions of the competition was the intro-
duction of a concurrency-related challenge. Furthermore,
we are happy to note that this year two teams participated
using bounded verification tools (CBMC and mCRL2) to
check functional properties. We hope such participation
contributes to better understanding of the strengths of dif-
ferent kinds of tools and opens new avenues for combining
them.

Two further insights demonstrated by the solutions this
year were the importance of a good lemma library, and of
a good specification language. The similarity between the
specification language of mCRL2 and of “auto-active” veri-
fication systems was nothing but remarkable.

A new edition of the VerifyThis competition will be held
as part of ETAPS 2016.

Acknowledgements The organisers would like to thank Wojciech
Mostowski and Radu Grigore for their feedback and support prior to

the competition. The organisers also thank the competition’s sponsors:
Formal Methods Europe, Galois, Inc., and Microsoft Research. Their
contributions helped us to support participants with travel grants, and
to finance the various prizes.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Gre-
bing, S., Hähnle, R., Hentschel, M., Herda, M., Klebanov, V.,
Mostowski, W., Scheben, C., Schmitt, P.H., Ulbrich, M.: The KeY
platform for verification and analysis of Java programs. In: Gian-
nakopoulou,D.,Kroening,D. (eds.) 6th international conference on
verified software: theories, tools and experiments (VSTTE 2014),
vol. 8471 of LNCS, pp. 55–71. Springer, Berlin (2014)

2. Bormer, T., Brockschmidt, M., Distefano, D., Ernst, G., Filliâtre,
J.-C., Grigore, R., Huisman, M., Klebanov, V., Marché, C., Mona-
han, R., Mostowski, W., Polikarpova, N., Scheben, C., Schellhorn,
G., Tofan, B., Tschannen, J., Ulbrich, M.: The COST IC0701 ver-
ification competition 2011. In: Beckert, B., Damiani, F., Gurov,
D. (eds.) International conference on formal verification of object-
oriented systems (FoVeOOS 2011), vol. 7421 of LNCS, pp. 3–21.
Springer, Berlin (2011)

3. Beyer, D.: Software verification and verifiable witnesses—(report
on SV-COMP 2015). In: Baier, C., Tinelli, C. (eds.) 21st inter-
national conference on tools and algorithms for the construction
and analysis of systems (TACAS 2015), vol. 9035 of LNCS, pp.
401–416. Springer, Berlin (2015)

4. Blom, S., Huisman, M.: The VerCors tool for verification of con-
current programs. In: Jones C.B., Pihlajasaari, P., Sun, J. (eds.) 19th
International symposium on formal methods (FM 2014), vol. 8442
of LNCS, pp. 127–131. Springer, Berlin (2014)

5. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink,
E.P., Wesselink, W., Willemse T.A.C.: An overview of the mCRL2
toolset and its recent advances. In: Piterman, N., Smolka, S.A.
(eds.) 19th international conference on tools and algorithms for the
construction and analysis of systems (TACAS 2013), vol. 7795 of
LNCS, pp. 199–213. Springer, Berlin (2013)

6. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV:
overview and verifyThis competition. Int. J. Softw. Tools Technol.
Transf. 17(6), 677–694 (2015)

7. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet
provers. In: Felleisen, M., Gardner, P. (eds.) 22nd European sym-
posium on programming (ESOP 2013), vol. 7792 of LNCS, pp.
125–128. Springer, Berlin (2013)

8. Filliâtre, J.-C., Paskevich, A., Stump, A.: The 2nd verified soft-
ware competition: experience report. In: Klebanov, V., Biere, A.,
Beckert, B., Sutcliffe, G. (eds.) 1st international workshop on com-
parative empirical evaluation of reasoning systems (COMPARE
2012), vol. 873 of CEUR workshop proceedings. CEUR-WS.org
(2012)

9. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.,
Păsăreanu, C.S.: Rigorous examination of reactive systems. Int.
J. Softw. Tools Technol. Transf. 16(5), 457–464 (2014)

10. Huisman, M., Klebanov, V., Monahan, R.: On the organisation of
program verification competitions. In: Klebanov, V., Beckert, B.,
Biere, A., Sutcliffe, G. (eds.) 1st international workshop on com-
parative empirical evaluation of reasoning systems (COMPARE

123

https://swt.informatik.uni-augsburg.de/swt/projects/verifythis-competition-2015/
https://swt.informatik.uni-augsburg.de/swt/projects/verifythis-competition-2015/
https://swt.informatik.uni-augsburg.de/swt/projects/verifythis-competition-2015/
http://toccata.lri.fr/gallery/why3.en.html
http://toccata.lri.fr/gallery/why3.en.html
http://etaps2015.verifythis.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

VerifyThis 2015 771

2012), vol. 873 of CEUR workshop proceedings. CEUR-WS.org
(2012)

11. Huisman, M., Klebanov, V., Monahan, R.: Verifythis 2012. Int. J.
Softw. Tools Technol. Transf. 17(6), 647–657 (2015)

12. Hitotumatu, H., Noshita, K.: A technique for implementing back-
track algorithms and its application. Inf. Process. Lett. 8(4),
174–175 (1979)

13. Klebanov, V., Beckert, B., Biere, A., Sutcliffe, G. (eds.). Proceed-
ings of the 1st international workshop on comparative empirical
evaluation of reasoning systems (COMPARE 2012), vol. 873 of
CEUR workshop proceedings. CEUR-WS.org (2012)

14. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C: a software analysis perspective. FormalAsp.Comput.
27(3), 573–609 (2015)

15. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz,
V., Alkassar, E., Arthan, R., Bronish, D., Chapman, R., Cohen, E.,
Hillebrand, M., Jacobs, B., Leino, K.R.M., Monahan, R., Piessens,
F., Polikarpova, N., Ridge, T. Smans, J., Tobies, S., Tuerk, T.,
Ulbrich,M.,Weiß, B.: The 1st verified software competition: expe-
rience report. In: Butler, M., Schulte, W. (eds.) 17th international
symposium on formal methods (FM 2011), vol. 6664 of LNCS, pp.
154–168. Springer, Berlin (2011)

16. Knuth, D.E.: Dancing links. arXiv:cs/0011047 (2000) (arXiv
preprint)

17. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and
CEGAR for higher-order model checking. In: Hall, M.W., Padua,
D.A. (eds.) 32nd ACM SIGPLAN conference on programming
language design and implementation (PLDI 2011), pp. 222–233.
ACM (2011)

18. Kroening, D., Tautschnig, M.: CBMC—C bounded model
checker—(competition contribution). In: Ábrahám, E., Havelund,
K. (eds.) 20th international conference on tools and algorithms for
the construction and analysis of systems (TACAS 2014), vol. 8413
of LNCS, pp. 389–391. Springer, Berlin (2014)

19. Leino,K.R.M.:Dafny: an automatic programverifier for functional
correctness. In: Clarke, E.M., Voronkov, A. (eds.) 16th interna-
tional conference on logic for programming, artificial intelligence,
and reasoning (LPAR 2010), vol. 6355 of LNCS, pp. 348–370.
Springer, Berlin (2010)

20. Penninckx, W., Jacobs, B., Piessens, F.: Sound, modular and com-
positional verification of the input/output behavior of programs. In:
Vitek, J. (ed.) 24th European symposium on programming (ESOP
2015), vol. 9032 of LNCS, pp. 158–182. Springer, Berlin (2015)

21. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible
invariants through semantic collaboration. In: Jones, C.B., Pihla-
jasaari, P., Sun, J. (eds.) 19th international symposium on formal
methods (FM 2014), vol. 8442 of LNCS, pp. 514–530. Springer,
Berlin (2014)

22. Swamy,N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan,K.,Yang,
J.: Secure distributed programming with value-dependent types. J.
Funct. Program. 23(4), 402–451 (2013)

23. Sedjelma, S.M.: A parallel extended GCD algorithm. J. Discret.
Algorithms 6(3), 526–538 (2008)

24. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: Auto-
Proof: auto-active functional verification of object-oriented pro-
grams. In: Baier, C., Tinelli, C. (eds.) 21st international conference
on tools and algorithms for the construction and analysis of sys-
tems (TACAS 2015), vol. 9035 of LNCS, pp. 566–580. Springer,
Berlin (2015)

123

http://arxiv.org/abs/cs/0011047

	VerifyThis 2015
	A program verification competition
	Abstract
	1 Introduction
	1.1 VerifyThis 2015
	1.2 Rules

	2 Challenge 1: Relaxed Prefix (60 minutes)
	2.1 Verification task
	2.2 Comments on solutions
	2.3 Future verification tasks

	3 Challenge 2: Parallel GCD (60 minutes)
	3.1 Verification task
	3.2 Comments on solutions

	4 Challenge 3: Dancing Links (90 minutes)
	4.1 Verification task
	4.2 Comments on solutions

	5 Results, statistics, and overall remarks
	5.1 Awarded prizes and statistics
	5.2 Statistics per challenge
	5.3 Travel grants
	5.4 Post-mortem sessions
	5.5 Soliciting challenges
	5.6 Session recording
	5.7 Related events
	5.8 Judging criteria
	5.9 Post-competition discussion
	5.10 Final remarks

	Acknowledgements
	References

