
Challenge II: DLL to BST

Description

This challenge is to verify an in-place algorithm to convert a sorted doubly-linked list (DLL)
into a balanced binary search tree (BST). The algorithm runs in linear time, and proceeds by
�rst making a pass over the list to calculate its length, say =. It then recursively constructs
a BST out of the �rst =/2 nodes, makes this the left subtree of the middle node, and then
recursively constructs the right subtree using the remaining nodes.

Assume that each node has 3 �elds, data, prev, and next, and when constructing the BST,
we use the prev �eld to link a node to its left child and the next �eld to link a node to its right
child.

The code for this algorithm is given in Figure 1.

Veri�cation Tasks

1. Prove that this algorithm converts an input list into a tree.

2. Prove that the algorithm is memory-safe.

3. Prove that if the input list is sorted then the resulting tree is a BST.

4. Prove that the resulting BST is balanced.

5. Prove that the algorithm terminates.

6. (Optional) Prove the above for an iterative version of size.

1



1 // Ref is the type of nodes used for both list and tree, and has these fields:
2 field data: Int
3 field prev: Ref // Also used as left subtree pointer
4 field next: Ref // Also used as right subtree pointer
5
6 method size(head: Ref) returns (count: Int) {
7 if (head != null) {
8 count := size(head.next)
9 count := count + 1

10 } else {
11 count := 0
12 }
13 }
14
15 method dll_to_bst(head: Ref) returns (root: Ref) {
16 var n: Int
17 var right: Ref
18 n := size(head)
19 root, right := dll_to_bst_rec(head, n)
20 }
21
22 // Converts a sorted DLL into a balanced BST
23 // head: Pointer to doubly linked list
24 // n: number of nodes of list to convert to tree
25 method dll_to_bst_rec(head: Ref, n: Int) returns (root: Ref, right: Ref) {
26 if (n > 0) {
27 // Recursively construct the left subtree
28 var left: Ref
29 left, root := dll_to_bst_rec(head, n/2)
30 // [head, root) is a tree rooted at left, [root, ...] is a list
31
32 // Set pointer to left subtree
33 root.prev := left
34
35 // Recursively construct the right subtree
36 // size(right subtree) = n - size(left subtree) - 1 (for root)
37 var temp: Ref
38 temp, right := dll_to_bst_rec(root.next, n-n/2-1)
39 // [head, root) is a tree rooted at left, [root.next, right) is tree at temp
40
41 // Set pointer to right subtree
42 root.next := temp
43 // [head, right) is a tree rooted at root
44 } else {
45 root := null
46 right := head
47 }
48 }

Figure 1: Code for the algorithm that converts a sorted DLL into a balanced BST.

2


