
C/C++

Challenge 3
Nonblocking Concurrent Queue using LL/SC Synchronization

Background

Certain multicore architectures provide a concurrency mechanism in the form of a pair of atomic operations:
● load-linked (LL)

● store-conditional (SC).

The semantics of these operations are specified as follows. To each scalar memory location v, there is associated

a set of thread IDs, valid_v. If tid is the ID of the executing thread, then the two operations behave as follows:

LL(v):

valid_v ← valid_v U {tid};

return v;

SC(v,x):

if (tid in valid_v) {

valid_v ← emptyset;

v ← x;

return true;

} else

return false;

LL(v) returns the value stored in v as usual, but also adds tid to the valid set of v. SC(v,x) checks to see if the

executing thread is in the valid set of v; if it is, then it clears valid_v, stores the value x in v, and returns true;

otherwise it returns falsewithout modifying v or valid_v.

A thread typically uses these operations as follows:
t ← LL(v) // reads v

…
if (SC(v,x)) … // succeeds only if no thread modified v after the read above

In 2008, Claude Evéquoz proposed a concurrent FIFO queue based on this mechanism. To keep things simple,
we assume the element type is int, -1 indicates a “null” entry, and nonnegative values represent non-null

entries. The shared data structures and enqueue/dequeue operations are shown below:

int Q[LEN]; // array with indexes in 0..LEN-1
unsigned int Head, Tail;

bool enqueue(int val) {
unsigned int t, tailSlot;
int slot;
while (true) {



t = Tail;
if (t == Head + LEN)
return false; // queue is full

tailSlot = t % LEN;
slot = LL(&Q[tailSlot]);
if (t == Tail) {
if (slot != null) {
if (LL(&Tail) == t)
SC(&Tail, t+1);

} else if (SC(&Q[tailSlot], val)) {
if (LL(&Tail) == t)
SC(&Tail, t+1);

return true; // success
}

}
}

}

int dequeue() {
unsigned int h, headSlot;
int slot;
while (1) {
h = Head;
if (h == Tail)
return null; // empty

headSlot = h % LEN;
slot = LL(&Q[headSlot]);
if (h == Head) {
if (slot == null) {
if (LL(&Head) == h)
SC(&Head, h+1);

} else if (SC(&Q[headSlot], null)) {
if (LL(&Head) == h)
SC(&Head, h+1);

return slot; // success
}

}
}

}

Notes:
● The implementation uses array Q as a cyclic bounded buffer. Initially, Head = Tail = 0 and Q[i] = null

(-1) for 0 ≤ i < LEN.
● Head and Tail increase monotonically; for this challenge, you may assume the “unsigned int” type is

unbounded.



● The number of elements stored in the queue is Tail - Head, and these elements are located at

positions Head%LEN, (Head+1)%LEN, ..., (Tail-1)%LEN of Q.

● We assume a sequentially consistent memory model, i.e., an execution is an interleaved sequence of
atomic actions from the different threads, and the value read from a memory location is the last value
written to that location.

Tasks

These can be done in any order. Simplify or add assumptions as needed. The first set of tasks use only the
enqueue operation:

1. In your favorite language, write a program P incorporating Evéquoz's FIFO queue (only the enqueue

operation is needed). The queue is initially empty. P generates NT threads (NT ≥ 1), with IDs 0, ..., NT-1.

Each thread calls enqueue on its thread ID, then terminates.
2. Show that all executions of P terminate (i.e., all threads terminate).
3. Show that no out-of-bound array indexes occur on any execution of P.
4. Assuming NT ≤ LEN, show that in any execution of P,

a. all calls to enqueue return true (success);
b. at the final state, the size of the queue (Tail-Head) is NT;

c. at the final state, the contents of the queue are some permutation of the integers 0, ..., NT-1.

5. Assuming NT > LEN, show that in any execution of P, at the final state,
a. the queue is full (Tail-Head=LEN)

b. the data in the queue is some permutation of a subset of size LEN of 0, ..., NT-1.

If you have time, add the dequeue function...
Let program P' be like P, except that each thread first enqueues its ID, then dequeues an entry, storing the result
in some variable.

6. Show that all executions of P' terminate.
7. Show that no out-of-bound array indexes occur on any execution of P'.
8. Assuming NT ≤ LEN, show that in any execution of P',

a. at the final state, the queue is empty: Tail=Head and all entries are null

b. each call to enqueue returns true

c. the set of values returned by dequeue is exactly { 0, ..., NT-1 }.


