
4 Persistent Disjoint Sets

This challenge is inspired by a paper of Sylvain Conchon and Jean-Christophe Filliâtre [1].
A disjoint set (aka union-find) data structure maintains a partition of a finite set. The data

structure supports two operations: finding the class of a given element of the set and updating
the data structure by taking the union of two classes. Each class is uniquely identified by one
of its members, the class’ representative.

For simplicity, we assume that the underlying set is [0, . . . , n) for some natural number n
that is chosen when the data structure is initialized. Our goal is to implement a persistent
version of the data structure. That is, the union operation does not modify the structure in
place, but instead returns an updated version. This suggests the following minimal OCaml
signature for the operations of the data structure:

val create : int → dset
val find : dset → int → int
val union : dset → int → int → dset

Our implementation follows the classical optimal imperative algorithm [2, 3], which repre-
sents each class as an inverted tree whose nodes are the elements of the class (see Fig. 1). The
tree’s root is the representative of the class. The inverted trees for all classes are stored in an
array parent of size n that assigns each element to its parent in the tree of its class. A class
representative is its own parent, identifying a root.
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Figure 1: State of a disjoint set structure with 8 elements and two classes

A find ds x operation follows the parent pointers until it reaches the root r, which is the
representative that the operation will return. Crucial for the efficiency of the algorithm is the
path compression optimization: when the recursion stack of the traversal is unwound, find
reroutes the parent pointer of each node on the path directly to the root r. This guarantees
that subsequent find operations on these nodes will terminate in constant time.

A union ds x y operation uses find to identify the representatives rx and ry of x’s and y’s
classes and then lets rx become the new parent of ry or vice versa. To decide between these
two alternatives, the data structure maintains a second array size that assigns each element
to the number of its descendants (i.e. the size of its subtree). The new root is chosen to be rx
if and only if its size is greater than or equal to that of ry.

To obtain a persistent data structure, we build on the persistent arrays from Challenge 3
but otherwise follow the classical imperative algorithm. The representation of the type dset is
as follows:

type dset = { mutable parent: int parray; size: int parray }
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let create n =
let rec init a i =
if i < n then init (PArray.set a i i) (i + 1)
else a

in
let parent = init (PArray.create n 0) 0 in
let size = PArray.create n 0 in
{ parent; size }

let find ds x =
let rec find_aux x =
let p = PArray.get ds.parent x in
if p = x then ds.parent, p else
let parent, rx = find_aux p in
let parent = PArray.set parent x rx in
parent, rx

in
let parent, rx = find_aux x in
ds.parent ← parent;
rx

let union ds x y =
let rx = find ds x in
let ry = find ds y in
if rx = ry then ds else
let sx = PArray.get ds.size x in
let sy = PArray.get ds.size y in
let r1, r2 =
if sx >= sy then rx, ry else ry, rx

in
let parent = PArray.set ds.parent r2 r1 in
let size = PArray.set ds.size r1 (sx + sy) in
{ parent; size }

Figure 2: Implementation of persistent disjoint set data structure

An implementation of the three operations that follows the above description is given in Fig. 2.

Tasks

(a) Define the persistent disjoint set data structure in your verification tool of choice and
implement the create, find, and union operations.

(b) Prove that the implementations of the operations are memory-safe / crash-free. That is,
you should prove that all pointer accesses are safe and that all calls to persistent array
operations satisfy the preconditions needed to guarantee memory safety of these calls (cf.
Challenge 3). In particular, all array accesses should be within the bounds of the array.

(c) Prove the functional correctness of the three operations.

(d) Prove that all operations terminate.
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let find ds x =
let rec find_aux parent x p =
if p = x then parent, p
else
let pp = PArray.get parent p in
let parent = PArray.set parent x pp in
find_aux parent p pp

in
let p = PArray.get ds.parent x in
let parent, rx = find_aux ds.parent x p in
ds.parent ← parent;
rx

Figure 3: Implementation of find with path splitting

Extra Tasks

An alternative to the path compression optimization is path splitting. Here, find sets the
parent pointer of every node along the path to that of its grandparent. These updates are
performed during the upward traversal of the path, yielding a tail-recursive implementation,
as shown in Fig. 3. This implementation is still asymptotically optimal [4].

(e) Implement the variant of find with path splitting in your verification tool of choice.

(f) Prove that the variant is memory safe / crash safe.

(g) Verify that find with path splitting is functionally correct.

(h) Prove that find with path splitting always terminates.
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